Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems

Paul Escapil-Inchauspé, Gonzalo A. Ruz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

We consider physics-informed neural networks (PINNs) (Raissiet al., 2019) for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equation for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density r and (iii) the frequency κ, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods.

Idioma originalInglés
Número de artículo126826
PublicaciónNeurocomputing
Volumen561
DOI
EstadoPublicada - 7 dic. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems'. En conjunto forman una huella única.

Citar esto