Hydranet: Data augmentation for regression neural networks

Florian Dubost, Gerda Bortsova, Hieab Adams, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, Marleen de Bruijne

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

9 Citas (Scopus)

Resumen

Deep learning techniques are often criticized to heavily depend on a large quantity of labeled data. This problem is even more challenging in medical image analysis where the annotator expertise is often scarce. We propose a novel data-augmentation method to regularize neural network regressors that learn from a single global label per image. The principle of the method is to create new samples by recombining existing ones. We demonstrate the performance of our algorithm on two tasks: estimation of the number of enlarged perivascular spaces in the basal ganglia, and estimation of white matter hyperintensities volume. We show that the proposed method improves the performance over more basic data augmentation. The proposed method reached an intraclass correlation coefficient between ground truth and network predictions of 0.73 on the first task and 0.84 on the second task, only using between 25 and 30 scans with a single global label per scan for training. With the same number of training scans, more conventional data augmentation methods could only reach intraclass correlation coefficients of 0.68 on the first task, and 0.79 on the second task.

Idioma originalInglés
Título de la publicación alojadaMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditoresDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas438-446
Número de páginas9
ISBN (versión impresa)9783030322502
DOI
EstadoPublicada - 2019
Publicado de forma externa
Evento22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duración: 13 oct. 201917 oct. 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11767 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
País/TerritorioChina
CiudadShenzhen
Período13/10/1917/10/19

Huella

Profundice en los temas de investigación de 'Hydranet: Data augmentation for regression neural networks'. En conjunto forman una huella única.

Citar esto