Resumen
Declarative memory consolidation is hypothesized to require a twostage, reciprocal cortical-hippocampal dialogue. According to this model, higher frequency signals convey information from the cortex to hippocampus during wakefulness, but in the reverse direction during slow-wave sleep (SWS). Conversely, lower-frequency activity propagates from the information "receiver" to the "sender" to coordinate the timing of information transfer. Reversal of sender/ receiver roles across wake and SWS implies that higher- and lower-frequency signaling should reverse direction between the cortex and hippocampus. However, direct evidence of such a reversal has been lacking in humans. Here, we use human resting-state fMRI and electrocorticography to demonstrate that δ-band activity and infraslow activity propagate in opposite directions between the hippocampus and cerebral cortex. Moreover, both δ activity and infraslow activity reverse propagation directions between the hippocampus and cerebral cortex across wake and SWS. These findings provide direct evidence for state-dependent reversals in human cortical-hippocampal communication.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | E6868-E6876 |
Publicación | Proceedings of the National Academy of Sciences of the United States of America |
Volumen | 113 |
N.º | 44 |
DOI | |
Estado | Publicada - 1 nov. 2016 |
Publicado de forma externa | Sí |