High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We present a spectral Galerkin numerical scheme for solving Helmholtz and Laplace problems with Dirichlet boundary conditions on a finite collection of open arcs in two-dimensional space. A boundary integral method is employed, giving rise to a first kind Fredholm equation whose variational form is discretized using weighted Chebyshev polynomials. Well-posedness of the discrete problems is established as well as algebraic or even exponential convergence rates depending on the regularities of both arcs and excitations. Our numerical experiments show the robustness of the method with respect to number of arcs and large wavenumber range. Moreover, we present a suitable compression algorithm that further accelerates computational times.

Idioma originalInglés
Páginas (desde-hasta)1975-2009
Número de páginas35
PublicaciónESAIM: Mathematical Modelling and Numerical Analysis
Volumen54
N.º6
DOI
EstadoPublicada - 1 nov. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs'. En conjunto forman una huella única.

Citar esto