Gp-Unet: Lesion detection from weak labels with a 3D regression network

Florian Dubost, Gerda Bortsova, Hieab Adams, Arfan Ikram, Wiro J. Niessen, Meike Vernooij, Marleen De Bruijne

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

47 Citas (Scopus)

Resumen

We propose a novel convolutional neural network for lesion detection from weak labels. Only a single, global label per image - the lesion count - is needed for training. We train a regression network with a fully convolutional architecture combined with a global pooling layer to aggregate the 3D output into a scalar indicating the lesion count. When testing on unseen images, we first run the network to estimate the number of lesions. Then we remove the global pooling layer to compute localization maps of the size of the input image. We evaluate the proposed network on the detection of enlarged perivascular spaces in the basal ganglia in MRI. Our method achieves a sensitivity of 62% with on average 1.5 false positives per image. Compared with four other approaches based on intensity thresholding, saliency and class maps, our method has a 20% higher sensitivity.

Idioma originalInglés
Título de la publicación alojadaMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
EditoresLena Maier-Hein, Alfred Franz, Pierre Jannin, Simon Duchesne, Maxime Descoteaux, D. Louis Collins
EditorialSpringer Verlag
Páginas214-221
Número de páginas8
ISBN (versión impresa)9783319661780
DOI
EstadoPublicada - 2017
Publicado de forma externa
Evento20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canadá
Duración: 11 sep. 201713 sep. 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10435 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
País/TerritorioCanadá
CiudadQuebec City
Período11/09/1713/09/17

Huella

Profundice en los temas de investigación de 'Gp-Unet: Lesion detection from weak labels with a 3D regression network'. En conjunto forman una huella única.

Citar esto