Fuzzy granular evolving modeling for time series prediction

Daniel Leite, Fernando Gomide, Rosangela Ballini, Pyramo Costa

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

30 Citas (Scopus)

Resumen

Modeling large volumes of flowing data from complex systems motivates rethinking several aspects of the machine learning theory. Data stream mining is concerned with extracting structured knowledge from spatio-temporally correlated data. A profusion of systems and algorithms devoted to this end has been constructed under the conceptual framework of granular computing. This paper outlines a fuzzy set based granular evolving modeling FBeM approach for learning from imprecise data. Granulation arises because modeling uncertain data dispenses attention to details. The evolving aspect is fundamental to account endless flows of nonstationary data and structural adaptation of models. Experiments with classic Box-Jenkins and Mackey-Glass benchmarks as well as with actual Global40 bond data suggest that the FBeM approach outperforms alternative approaches.

Idioma originalInglés
Título de la publicación alojadaFUZZ 2011 - 2011 IEEE International Conference on Fuzzy Systems - Proceedings
Páginas2794-2801
Número de páginas8
DOI
EstadoPublicada - 2011
Publicado de forma externa
Evento2011 IEEE International Conference on Fuzzy Systems, FUZZ 2011 - Taipei, Taiwán
Duración: 27 jun. 201130 jun. 2011

Serie de la publicación

NombreIEEE International Conference on Fuzzy Systems
ISSN (versión impresa)1098-7584

Conferencia

Conferencia2011 IEEE International Conference on Fuzzy Systems, FUZZ 2011
País/TerritorioTaiwán
CiudadTaipei
Período27/06/1130/06/11

Huella

Profundice en los temas de investigación de 'Fuzzy granular evolving modeling for time series prediction'. En conjunto forman una huella única.

Citar esto