FINITE-ELEMENT DOMAIN APPROXIMATION FOR MAXWELL VARIATIONAL PROBLEMS ON CURVED DOMAINS

Rubén Aylwin, Carlos Jerez-Hanckes

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We consider the problem of domain approximation in finite element methods for Maxwell equations on general curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest and an exact parametrization of the surface may not be readily available. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact mesh. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions-in the approximate domains-to the continuous one in the original domain. Moreover, we present numerical results validating our claims. Key words. Nédélec finite elements, curl-conforming elements, Maxwell equations, domain approximation, Strang lemma.

Idioma originalInglés
Páginas (desde-hasta)1139-1171
Número de páginas33
PublicaciónSIAM Journal on Numerical Analysis
Volumen61
N.º3
DOI
EstadoPublicada - 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'FINITE-ELEMENT DOMAIN APPROXIMATION FOR MAXWELL VARIATIONAL PROBLEMS ON CURVED DOMAINS'. En conjunto forman una huella única.

Citar esto