Fast Calderón preconditioning for Helmholtz boundary integral equations

Ignacia Fierro, Carlos Jerez-Hanckes

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)


Calderón multiplicative preconditioners are an effective way to improve the condition number of first kind boundary integral equations yielding provable mesh independent bounds. However, when discretizing by local low-order basis functions as in standard Galerkin boundary element methods, their computational performance worsens as meshes are refined. This stems from the barycentric mesh refinement used to construct dual basis functions that guarantee the discrete stability of L2-pairings. Based on coarser quadrature rules over dual cells and H-matrix compression, we propose a family of fast preconditioners that significantly reduce assembly and computation times when compared to standard versions of Calderón preconditioning for the three-dimensional Helmholtz weakly and hyper-singular boundary integral operators. Several numerical experiments validate our claims and point towards further enhancements.

Idioma originalInglés
Número de artículo109355
PublicaciónJournal of Computational Physics
EstadoPublicada - 15 may. 2020
Publicado de forma externa


Profundice en los temas de investigación de 'Fast Calderón preconditioning for Helmholtz boundary integral equations'. En conjunto forman una huella única.

Citar esto