Extension by zero in discrete trace spaces: Inverse estimates

Ralf Hiptmair, Carlos Jerez-Hanckes, Shipeng Mao

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

We consider lowest-order H -1/2 (div Γ, Γ)- and H -1/2 (Γ)-conforming boundary element spaces supported on part of the boundary Γ of a Lipschitz polyhedron. Assuming families of triangular meshes created by regular refinement, we prove that on these spaces the norms of the extension by zero operators with respect to (localized) trace norms increase poly-logarithmically with the mesh width. Our approach harnesses multilevel norm equivalences for boundary element spaces, inherited from stable multilevel splittings of finite element spaces.

Idioma originalInglés
Páginas (desde-hasta)2589-2615
Número de páginas27
PublicaciónMathematics of Computation
Volumen84
N.º296
DOI
EstadoPublicada - 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Extension by zero in discrete trace spaces: Inverse estimates'. En conjunto forman una huella única.

Citar esto