Evolving granular neural network for fuzzy time series forecasting

Daniel Leite, Pyramo Costa, Fernando Gomide

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

9 Citas (Scopus)

Resumen

A primary requirement of a broad class of evolving intelligent systems is to process a sequence of numeric data over time. This paper introduces a granular neural network framework for evolving fuzzy system modeling from fuzzy data streams. The evolving granular neural network (eGNN) efficiently handles concept changes, distinctive events of nonstationary environments. eGNN constructs interpretable multi-sized local models using fuzzy neural information fusion. An incremental learning algorithm builds the neural network topology from the information contained in data streams. Here we emphasize fuzzy intervals and objects with trapezoidal membership functions. Triangular fuzzy numbers, intervals, and numeric data are particular instances of trapezoids. An example concerning weather time series forecasting illustrates the neural network performance. The goal is to extract, from monthly temperature data, information of interest to attain accurate one-step forecasts and better rapport with reality. Simulation results suggest that eGNN learns from fuzzy data successfully and is competitive with state-of-the-art approaches.

Idioma originalInglés
Título de la publicación alojada2012 International Joint Conference on Neural Networks, IJCNN 2012
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento2012 Annual International Joint Conference on Neural Networks, IJCNN 2012, Part of the 2012 IEEE World Congress on Computational Intelligence, WCCI 2012 - Brisbane, QLD, Australia
Duración: 10 jun. 201215 jun. 2012

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks

Conferencia

Conferencia2012 Annual International Joint Conference on Neural Networks, IJCNN 2012, Part of the 2012 IEEE World Congress on Computational Intelligence, WCCI 2012
País/TerritorioAustralia
CiudadBrisbane, QLD
Período10/06/1215/06/12

Huella

Profundice en los temas de investigación de 'Evolving granular neural network for fuzzy time series forecasting'. En conjunto forman una huella única.

Citar esto