Evolving ensemble of fuzzy models for multivariate time series prediction

Lourenco Bueno, Pyramo Costa, Israel Mendes, Enderson Cruz, Daniel Leite

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

12 Citas (Scopus)

Resumen

Weather modeling and prediction has been quite a challenge over the years. Predictions based on climatic models whose dynamical behavior is nonlinear, nonstationary, and based on high order difference equations is a tough task and usually requires a demanding and non-intuitive tuning expertise. This paper suggests an ensemble of evolving fuzzy models for multivariate time series prediction. The proposed ensemble approach is able to model the weather dynamics from data streams concerning variables such as wet bulb temperature, atmospheric pressure, maximum temperature, and relative humidity of the air. The purpose is to predict rainfalls 5 days ahead while providing a linguistic description of the reasoning used to give the predictions. Empirical results show that the ensemble-based fuzzy evolving modeling approach outperforms other evolving approaches in terms of accurate predictions.

Idioma originalInglés
Título de la publicación alojadaFUZZ-IEEE 2015 - IEEE International Conference on Fuzzy Systems
EditoresAdnan Yazici, Nikhil R. Pal, Hisao Ishibuchi, Bulent Tutmez, Chin-Teng Lin, Joao M. C. Sousa, Uzay Kaymak, Trevor Martin
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781467374286
DOI
EstadoPublicada - 25 nov. 2015
Publicado de forma externa
EventoIEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015 - Istanbul, Turquía
Duración: 2 ago. 20155 ago. 2015

Serie de la publicación

NombreIEEE International Conference on Fuzzy Systems
Volumen2015-November
ISSN (versión impresa)1098-7584

Conferencia

ConferenciaIEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015
País/TerritorioTurquía
CiudadIstanbul
Período2/08/155/08/15

Huella

Profundice en los temas de investigación de 'Evolving ensemble of fuzzy models for multivariate time series prediction'. En conjunto forman una huella única.

Citar esto