Evolutionary optimization for ranking how-to questions based on user-generated contents

John Atkinson, Alejandro Figueroa, Christian Andrade

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

In this work, a new evolutionary model is proposed for ranking answers to non-factoid (how-to) questions in community question-answering platforms. The approach combines evolutionary computation techniques and clustering methods to effectively rate best answers from web-based user-generated contents, so as to generate new rankings of answers. Discovered clusters contain semantically related triplets representing question-answers pairs in terms of subject-verb-object, which is hypothesized to improve the ranking of candidate answers. Experiments were conducted using our evolutionary model and concept clustering operating on large-scale data extracted from Yahoo! Answers. Results show the promise of the approach to effectively discovering semantically similar questions and improving the ranking as compared to state-of-the-art methods.

Idioma originalInglés
Páginas (desde-hasta)7060-7068
Número de páginas9
PublicaciónExpert Systems with Applications
Volumen40
N.º17
DOI
EstadoPublicada - 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Evolutionary optimization for ranking how-to questions based on user-generated contents'. En conjunto forman una huella única.

Citar esto