Electromagnetic wave scattering by random surfaces: Shape holomorphy

Carlos Jerez-Hanckes, Christoph Schwab, Jakob Zech

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

34 Citas (Scopus)

Resumen

For time-harmonic electromagnetic waves scattered by either perfectly conducting or dielectric bounded obstacles, we show that the fields depend holomorphically on the shape of the scatterer. In the presence of random geometrical perturbations, our results imply strong measurability of the fields, in weighted spaces in the exterior of the scatterer. These findings are key to prove dimension-independent convergence rates of sparse approximation techniques of polynomial chaos type for forward and inverse computational uncertainty quantification. Also, our shape-holomorphy results imply parsimonious approximate representations of the corresponding parametric solution families, which are produced, for example, by greedy strategies such as model order reduction or reduced basis approximations. Finally, the presently proved shape holomorphy results imply convergence of shape Taylor expansions of far-field patterns for fixed amplitude domain perturbations in a vicinity of the nominal domain, thereby extending the widely used asymptotic linearizations employed in first-order, second moment domain uncertainty quantification.

Idioma originalInglés
Páginas (desde-hasta)2229-2259
Número de páginas31
PublicaciónMathematical Models and Methods in Applied Sciences
Volumen27
N.º12
DOI
EstadoPublicada - 1 nov. 2017
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Electromagnetic wave scattering by random surfaces: Shape holomorphy'. En conjunto forman una huella única.

Citar esto