EFFECTIVE SCENARIOS IN MULTISTAGE DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH A FOCUS ON TOTAL VARIATION DISTANCE

Hamed Rahimian, Güzin Bayraksan, Tito Homem De-Mello

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

We study multistage distributionally robust optimization (DRO) to hedge against ambiguity in quantifying the underlying uncertainty of a problem. Recognizing that not all the realizations and scenario paths might have an "effect"on the optimal value, we investigate the question of how to define and identify critical scenarios for nested multistage DRO problems. Our analysis extends the work of Rahimian, Bayraksan, and Homem-de-Mello [Math. Program., 173 (2019), pp. 393-430], which was in the context of a static/two-stage setting, to the multistage setting. To this end, we define the notions of effectiveness of scenario paths and the conditional effectiveness of realizations along a scenario path for a general class of multistage DRO problems. We then propose easy-to-check conditions to identify the effectiveness of scenario paths in the multistage setting when the distributional ambiguity is modeled via the total variation distance. Numerical results show that these notions provide useful insight on the underlying uncertainty of the problem.

Idioma originalInglés
Páginas (desde-hasta)1698-1727
Número de páginas30
PublicaciónSIAM Journal on Optimization
Volumen32
N.º3
DOI
EstadoPublicada - 2022
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'EFFECTIVE SCENARIOS IN MULTISTAGE DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH A FOCUS ON TOTAL VARIATION DISTANCE'. En conjunto forman una huella única.

Citar esto