Dynamical complexity in cognitive neural networks

Eric Goles, Adrián G. Palacios

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexity.

Idioma originalInglés
Páginas (desde-hasta)479-485
Número de páginas7
PublicaciónBiological Research
Volumen40
N.º4
DOI
EstadoPublicada - 2007
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Dynamical complexity in cognitive neural networks'. En conjunto forman una huella única.

Citar esto