Dynamical and complexity results for high order neural networks.

E. Goles, M. Matamala

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We present dynamical results concerning neural networks with high order arguments. More precisely, we study the family of block-sequential iteration of neural networks with polynomial arguments. In this context, we prove that, under a symmetric hypothesis, the sequential iteration is the only one of this family to converge to fixed points. The other iteration modes present a highly complex dynamical behavior: non-bounded cycles and simulation of arbitrary non-symmetric linear neural network. We also study a high order memory iteration scheme which accepts an energy functional and bounded cycles in the size of the memory steps.

Idioma originalInglés
Páginas (desde-hasta)241-252
Número de páginas12
PublicaciónInternational journal of neural systems
Volumen5
N.º3
DOI
EstadoPublicada - 1994
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Dynamical and complexity results for high order neural networks.'. En conjunto forman una huella única.

Citar esto