DREAM-ON GYM: A Deep Reinforcement Learning Environment for Next-Gen Optical Networks

Nicolás Jara, Hermann Pempelfort, Erick Viera, Juan Pablo Sanchez, Gabriel España, Danilo Borquez-Paredes

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

A novel open-source toolkit for a straightforward implementation of deep reinforcement learning (DRL) techniques to address any resource allocation problem in current and future optical network architectures is presented. The tool follows OpenAI GYMNASIUM guidelines, presenting a versatile framework adaptable to any optical network architecture. Our tool is compatible with the Stable Baseline library, allowing the use of any agent available in the literature or created by the software user. For the training and testing process, we adapted the Flex Net Sim Simulator to be compatible with our toolkit. Using three agents from the Stable Baselines library, we exemplify our framework performance to demonstrate the tool’s overall architecture and assess its functionality. Results demonstrate how easily and consistently our tool can solve optical network resource allocation challenges using just a few lines of code applying Deep Reinforcement Learning techniques and ad-hoc heuristics algorithms.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2024
EditoresFloriano De Rango, Frank Werner, Gerd Wagner
EditorialScience and Technology Publications, Lda
Páginas215-222
Número de páginas8
ISBN (versión digital)9789897587085
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2024 - Dijon, Francia
Duración: 10 jul. 202412 jul. 2024

Serie de la publicación

NombreProceedings of the International Conference on Simulation and Modeling Methodologies, Technologies and Applications
ISSN (versión impresa)2184-2841

Conferencia

Conferencia14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2024
País/TerritorioFrancia
CiudadDijon
Período10/07/2412/07/24

Huella

Profundice en los temas de investigación de 'DREAM-ON GYM: A Deep Reinforcement Learning Environment for Next-Gen Optical Networks'. En conjunto forman una huella única.

Citar esto