Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data

Guillermo Marshall, Rolando De La Cruz-Mesía, Fernando A. Quintana, Anna E. Barón

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

21 Citas (Scopus)

Resumen

Multiple outcomes are often used to properly characterize an effect of interest. This article discusses model-based statistical methods for the classification of units into one of two or more groups where, for each unit, repeated measurements over time are obtained on each outcome. We relate the observed outcomes using multivariate nonlinear mixed-effects models to describe evolutions in different groups. Due to its flexibility, the random-effects approach for the joint modeling of multiple outcomes can be used to estimate population parameters for a discriminant model that classifies units into distinct predefined groups or populations. Parameter estimation is done via the expectation-maximization algorithm with a linear approximation step. We conduct a simulation study that sheds light on the effect that the linear approximation has on classification results. We present an example using data from a study in 161 pregnant women in Santiago, Chile, where the main interest is to predict normal versus abnormal pregnancy outcomes.

Idioma originalInglés
Páginas (desde-hasta)69-80
Número de páginas12
PublicaciónBiometrics
Volumen65
N.º1
DOI
EstadoPublicada - mar. 2009

Huella

Profundice en los temas de investigación de 'Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data'. En conjunto forman una huella única.

Citar esto