Discovering novel causal patterns from biomedical natural-language texts using Bayesian nets

John Atkinson, Alejandro Rivas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

17 Citas (Scopus)

Resumen

Most of the biomedicine text mining approaches do not deal with specific cause - effect patterns that may explain the discoveries. In order to fill this gap, this paper proposes an effective new model for text mining from biomedicine literature that helps to discover cause - effect hypotheses related to diseases, drugs, etc. The supervised approach combines Bayesian inference methods with natural-language processing techniques in order to generate simple and interesting patterns. The results of applying the model to biomedicine text databases and its comparison with other state-of-the-art methods are also discussed.

Idioma originalInglés
Páginas (desde-hasta)714-722
Número de páginas9
PublicaciónIEEE Transactions on Information Technology in Biomedicine
Volumen12
N.º6
DOI
EstadoPublicada - 2008
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Discovering novel causal patterns from biomedical natural-language texts using Bayesian nets'. En conjunto forman una huella única.

Citar esto