Discete state neural networks and energies

Michel Cosnard, Eric Goles

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

21 Citas (Scopus)

Resumen

In this paper we give under an appropriate theoretical framework a characterization about neural networks (evolving in a binary set of states) which admit an energy. We prove that a neural network, iterated sequentially, admits an energy if and only if the weight matrix verifies two conditions: the diagonal elements are non-negative and the associated incidence graph does not admit non-quasi-symmetric circuits. In this situation the dynamics are robust with respect to a class of small changes of the weight matrix. Further, for the parallel update we prove that a necessary and sufficient condition to admit an energy is that the incidence graph does not contain non-quasi-symmetric circuits.

Idioma originalInglés
Páginas (desde-hasta)327-334
Número de páginas8
PublicaciónNeural Networks
Volumen10
N.º2
DOI
EstadoPublicada - mar. 1997

Huella

Profundice en los temas de investigación de 'Discete state neural networks and energies'. En conjunto forman una huella única.

Citar esto