Derivation of cable equation by multiscale analysis for a model of myelinated axons

Carlos Jerez-Hanckes, Irina Pettersson, Volodymyr Rybalko

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

We derive a one-dimensional cable model for the electric potential propagation along an axon. Since the typical thickness of an axon is much smaller than its length, and the myelin sheath is distributed periodically along the neuron, we simplify the problem geometry to a thin cylinder with alternating myelinated and unmyelinated parts. Both the microstructure period and the cylinder thickness are assumed to be of order ε, a small positive parameter. Assuming a nonzero conductivity of the myelin sheath, we find a critical scaling with respect to ε which leads to the appearance of an additional potential in the homogenized nonlinear cable equation. This potential contains information about the geometry of the myelin sheath in the original three-dimensional model.

Idioma originalInglés
Páginas (desde-hasta)815-839
Número de páginas25
PublicaciónDiscrete and Continuous Dynamical Systems - Series B
Volumen25
N.º3
DOI
EstadoPublicada - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Derivation of cable equation by multiscale analysis for a model of myelinated axons'. En conjunto forman una huella única.

Citar esto