Deep Learning Classification Based on Raw MRI Images

Sebastian Moguilner, Agustin Ibañez

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

Resumen

In this chapter, we describe a step-by-step implementation of an automated anatomical MRI feature extractor based on artificial intelligence machine learning for classification. We applied the DenseNet—a state-of-the-art convolutional neural network producing more robust results than previous deep learning network architectures—to data from male (n = 400) and female (n = 400), age-, and education- matched healthy adult subjects. Moreover, we illustrate how an occlusion sensitivity analysis provides meaningful insights about the relevant information that the neural network used to make accurate classifications. This addresses the “black-box” limitations inherent in many deep learning implementations. The use of this approach with a specific dataset demonstrates how future implementations can use raw MRI scans to study a range of outcome measures, including neurological and psychiatric disorders.

Idioma originalInglés
Título de la publicación alojadaNeuromethods
EditorialHumana Press Inc.
Páginas395-413
Número de páginas19
DOI
EstadoPublicada - 2025
Publicado de forma externa

Serie de la publicación

NombreNeuromethods
Volumen218
ISSN (versión impresa)0893-2336
ISSN (versión digital)1940-6045

Huella

Profundice en los temas de investigación de 'Deep Learning Classification Based on Raw MRI Images'. En conjunto forman una huella única.

Citar esto