Constructing Branching Trees of Geostatistical Simulations

Margaret Armstrong, Juan Valencia, Guido Lagos, Xavier Emery

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

This paper proposes the use of multi-stage stochastic programming with recourse for optimised strategic open-pit mine planning. The key innovations are, firstly, that a branching tree of geostatistical simulations is developed to take account of uncertainty in ore grades, and secondly, scenario reduction techniques are applied to keep the trees to a manageable size. Our example shows that different mine plans would be optimal for the downside case when the deposit turns out to be of lower grade than expected compared to when it is of higher grade than expected. Our approach further provides the probabilities of these outcomes; that is, the idea is to move toward adaptive mine planning rather than just producing a single mine plan.

Idioma originalInglés
Páginas (desde-hasta)711-743
Número de páginas33
PublicaciónMathematical Geosciences
Volumen54
N.º4
DOI
EstadoPublicada - may. 2022

Huella

Profundice en los temas de investigación de 'Constructing Branching Trees of Geostatistical Simulations'. En conjunto forman una huella única.

Citar esto