TY - JOUR

T1 - Confining strings in supersymmetric theories with Higgs branches

AU - Shifman, M.

AU - Tallarita, Gianni

AU - Yung, Alexei

N1 - Publisher Copyright:
© 2015 American Physical Society.

PY - 2015/3/3

Y1 - 2015/3/3

N2 - We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches, strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L. We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N=1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula, the dependence of tension on the string length is logarithmic, and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung analytic expression.

AB - We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches, strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L. We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N=1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula, the dependence of tension on the string length is logarithmic, and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung analytic expression.

UR - http://www.scopus.com/inward/record.url?scp=84924358735&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.91.065005

DO - 10.1103/PhysRevD.91.065005

M3 - Article

AN - SCOPUS:84924358735

SN - 1550-7998

VL - 91

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

IS - 6

M1 - 065005

ER -