Comparing composite likelihood methods based on pairs for spatial Gaussian random fields

Moreno Bevilacqua, Carlo Gaetan

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

43 Citas (Scopus)

Resumen

In the last years there has been a growing interest in proposing methods for estimating covariance functions for geostatistical data. Among these, maximum likelihood estimators have nice features when we deal with a Gaussian model. However maximum likelihood becomes impractical when the number of observations is very large. In this work we review some solutions and we contrast them in terms of loss of statistical efficiency and computational burden. Specifically we focus on three types of weighted composite likelihood functions based on pairs and we compare them with the method of covariance tapering. Asymptotic properties of the three estimation methods are derived. We illustrate the effectiveness of the methods through theoretical examples, simulation experiments and by analyzing a data set on yearly total precipitation anomalies at weather stations in the United States.

Idioma originalInglés
Páginas (desde-hasta)877-892
Número de páginas16
PublicaciónStatistics and Computing
Volumen25
N.º5
DOI
EstadoPublicada - 3 sep. 2015

Huella

Profundice en los temas de investigación de 'Comparing composite likelihood methods based on pairs for spatial Gaussian random fields'. En conjunto forman una huella única.

Citar esto