Comparative Analysis of Spatial and Spectral Methods in GNN for Power Flow in Electrical Power Systems

Paulo A. Espinoza, Gonzalo A. Ruz

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper explores the application of Graph Neural Networks (GNNs) to power flow problems, comparing several spectral and spatial methods. The research reveals that spatial methods generally outperform their spectral counterparts, which do not rely on spectral theory, eigenvalues, or eigenvectors. GraphSAGE [9] demonstrates the best performance among the spatial methods tested, achieving a Mean Absolute Percentage Error (MAPE) of 0.79% on the test set in an experiment with 14-buses and 0.53% in the experiment with 30-buses. These findings suggest that for power flow problems, it is beneficial to consider at least hybrid or predominantly spatial models that leverage information from non-immediate neighbors. This research highlights the potential of spatial GNN methods in accurately capturing the complexities of power systems, paving the way for more robust and efficient solutions in the domain.

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 27th Iberoamerican Congress, CIARP 2024, Proceedings
EditoresRuber Hernández-García, Ricardo J. Barrientos, Sergio A. Velastin
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas16-29
Número de páginas14
ISBN (versión impresa)9783031766039
DOI
EstadoPublicada - 2025
Publicado de forma externa
Evento27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024 - Talca, Chile
Duración: 26 nov. 202429 nov. 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen15369 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024
País/TerritorioChile
CiudadTalca
Período26/11/2429/11/24

Huella

Profundice en los temas de investigación de 'Comparative Analysis of Spatial and Spectral Methods in GNN for Power Flow in Electrical Power Systems'. En conjunto forman una huella única.

Citar esto