CNN Sensitivity Analysis for Land Cover Map Models Using Sparse and Heterogeneous Satellite Data

Sebastián Moreno, Javier Lopatin, Diego Corvalán, Alejandra Bravo-Diaz

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Land cover maps provide detailed information on the land use of territories, which is useful for public policy making. Constant changes in the landscape limit the usefulness of these maps over time, so they need to be constantly updated. In this context, remote sensing images combined with the use of deep neural networks can be used for this purpose. Although several models are trained on different datasets, we do not know their ability to transfer the learned patterns to new data. In this paper, we evaluate several pre-trained semantic segmentation models on deep convolutional neural networks (CNN) using freely available global RGB data from Sentinel-2. Four CNN models with 32 different architectures were evaluated on data from three continents, on seven different classes. The results show that the best model is the PSPNet with seresnet18, obtaining a test macro F1 score of 0.4950 when the model is trained with data augmentation and fine-tuning.

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 27th Iberoamerican Congress, CIARP 2024, Proceedings
EditoresRuber Hernández-García, Ricardo J. Barrientos, Sergio A. Velastin
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas63-77
Número de páginas15
ISBN (versión impresa)9783031766060
DOI
EstadoPublicada - 2025
Publicado de forma externa
Evento27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024 - Talca, Chile
Duración: 26 nov. 202429 nov. 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen15368 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024
País/TerritorioChile
CiudadTalca
Período26/11/2429/11/24

Huella

Profundice en los temas de investigación de 'CNN Sensitivity Analysis for Land Cover Map Models Using Sparse and Heterogeneous Satellite Data'. En conjunto forman una huella única.

Citar esto