Challenges from Probabilistic Learning for Models of Brain and Behavior

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

Resumen

Probabilistic learning is a research program that aims to understand how animals and humans learn and adapt their behavior in situations where the pairing between cues and outcomes is not always completely reliable. This chapter provides an overview of the challenges of probabilistic learning for models of the brain and behavior. We discuss the historical background of probabilistic learning, its theoretical foundations, and its applications in various fields such as psychology, neuroscience, and artificial intelligence. We also review some key findings from experimental studies on probabilistic learning, including the role of feedback, attention, memory, and decision-making processes. Finally, we highlight some of the current debates and future directions in this field.

Idioma originalInglés
Título de la publicación alojadaSTEAM-H
Subtítulo de la publicación alojadaScience, Technology, Engineering, Agriculture, Mathematics and Health
EditorialSpringer Nature
Páginas73-84
Número de páginas12
DOI
EstadoPublicada - 2023
Publicado de forma externa

Serie de la publicación

NombreSTEAM-H: Science, Technology, Engineering, Agriculture, Mathematics and Health
VolumenPart F1986
ISSN (versión impresa)2520-193X
ISSN (versión digital)2520-1948

Huella

Profundice en los temas de investigación de 'Challenges from Probabilistic Learning for Models of Brain and Behavior'. En conjunto forman una huella única.

Citar esto