Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting

Daniel Arias-Garzón, Reinel Tabares-Soto, Gonzalo A. Ruz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R2 metric across all datasets, outperforming benchmark models.

Idioma originalInglés
Número de artículo125384
PublicaciónExpert Systems with Applications
Volumen259
DOI
EstadoPublicada - 1 ene. 2025
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Building better forecasting pipelines: A generalizable guide to multi-output spatio-temporal forecasting'. En conjunto forman una huella única.

Citar esto