Boosted W and Z tagging with jet charge and deep learning

Yu Chen Janice Chen, Cheng Wei Chiang, Giovanna Cottin, David Shih

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

26 Citas (Scopus)


We demonstrate that the classification of boosted, hadronically decaying, weak gauge bosons can be significantly improved over traditional cut-based and boosted decision tree-based methods using deep learning and the jet charge variable. We construct binary taggers for W+ vs W- A nd Z vs W discrimination, as well as an overall ternary classifier for W+/W-/Z discrimination. Besides a simple convolutional neural network, we also explore a composite of two simple convolutional neural networks, with different numbers of layers in the jet pT and jet charge channels. We find that this novel structure boosts the performance particularly when considering the Z boson as a signal. The methods presented here can enhance the physics potential in Standard Model measurements and searches for new physics that are sensitive to the electric charge of weak gauge bosons.

Idioma originalInglés
Número de artículo053001
PublicaciónPhysical Review D
EstadoPublicada - 1 mar. 2020


Profundice en los temas de investigación de 'Boosted W and Z tagging with jet charge and deep learning'. En conjunto forman una huella única.

Citar esto