Bi-parametric operator preconditioning

Paul Escapil-Inchauspé, Carlos Jerez-Hanckes

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

We extend the operator preconditioning framework Hiptmair (2006) [10] to Petrov-Galerkin methods while accounting for parameter-dependent perturbations of both variational forms and their preconditioners, as occurs when performing numerical approximations. By considering different perturbation parameters for the original form and its preconditioner, our bi-parametric abstract setting leads to robust and controlled schemes. For Hilbert spaces, we derive exhaustive linear and super-linear convergence estimates for iterative solvers, such as h-independent convergence bounds, when preconditioning with low-accuracy or, equivalently, with highly compressed approximations.

Idioma originalInglés
Páginas (desde-hasta)220-232
Número de páginas13
PublicaciónComputers and Mathematics with Applications
Volumen102
DOI
EstadoPublicada - 15 nov. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Bi-parametric operator preconditioning'. En conjunto forman una huella única.

Citar esto