Beyond classes of graphs with “few” minimal separators: FPT results through potential maximal cliques

Mathieu Liedloff, Pedro Montealegre, Ioan Todinca

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In many graph problems, like Longest Induced Path, Maximum Induced Forest, etc., we are given as input a graph G and the goal is to compute a largest induced subgraph G[F], of treewidth at most a constant t, and satisfying some property P. Fomin et al. [12] proved that this generic problem is polynomial on the class of graphs Gpoly, i.e., the graphs having at most poly(n) minimal separators for some polynomial poly, when property P is expressible in counting monadic second order logic (CMSO). Here we consider the class Gpoly + kv, formed by graphs of Gpoly to which we may add a set of at most k vertices with arbitrary adjacencies, called modulator. We prove that the generic optimization problem is fixed parameter tractable on Gpoly + kv, with parameter k, if the modulator is also part of the input. The running time is of type O(f(k + t, P) · nt+5 · (poly(n)2)), for some function f.

Idioma originalInglés
Título de la publicación alojadaGraph-Theoretic Concepts in Computer Science - 41st International Workshop, WG 2015, Revised Papers
EditoresErnst W. Mayr
EditorialSpringer Verlag
Páginas499-512
Número de páginas14
ISBN (versión impresa)9783662531730
DOI
EstadoPublicada - 2016
Evento41st International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015 - Garching, Alemania
Duración: 17 jun. 201519 jun. 2015

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9224 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia41st International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015
País/TerritorioAlemania
CiudadGarching
Período17/06/1519/06/15

Huella

Profundice en los temas de investigación de 'Beyond classes of graphs with “few” minimal separators: FPT results through potential maximal cliques'. En conjunto forman una huella única.

Citar esto