TY - JOUR
T1 - Bayesian Constitutionalization
T2 - Twitter Sentiment Analysis of the Chilean Constitutional Process through Bayesian Network Classifiers
AU - Ruz, Gonzalo A.
AU - Henríquez, Pablo A.
AU - Mascareño, Aldo
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Constitutional processes are a cornerstone of modern democracies. Whether revolutionary or institutionally organized, they establish the core values of social order and determine the institutional architecture that governs social life. Constitutional processes are themselves evolutionary practices of mutual learning in which actors, regardless of their initial political positions, continuously interact with each other, demonstrating differences and making alliances regarding different topics. In this article, we develop Tree Augmented Naive Bayes (TAN) classifiers to model the behavior of constituent agents. According to the nature of the constituent dynamics, weights are learned by the model from the data using an evolution strategy to obtain a good classification performance. For our analysis, we used the constituent agents’ communications on Twitter during the installation period of the Constitutional Convention (July–October 2021). In order to differentiate political positions (left, center, right), we applied the developed algorithm to obtain the scores of 882 ballots cast in the first stage of the convention (4 July to 29 September 2021). Then, we used k-means to identify three clusters containing right-wing, center, and left-wing positions. Experimental results obtained using the three constructed datasets showed that using alternative weight values in the TAN construction procedure, inferred by an evolution strategy, yielded improvements in the classification accuracy measured in the test sets compared to the results of the TAN constructed with conditional mutual information, as well as other Bayesian network classifier construction approaches. Additionally, our results may help us to better understand political behavior in constitutional processes and to improve the accuracy of TAN classifiers applied to social, real-world data.
AB - Constitutional processes are a cornerstone of modern democracies. Whether revolutionary or institutionally organized, they establish the core values of social order and determine the institutional architecture that governs social life. Constitutional processes are themselves evolutionary practices of mutual learning in which actors, regardless of their initial political positions, continuously interact with each other, demonstrating differences and making alliances regarding different topics. In this article, we develop Tree Augmented Naive Bayes (TAN) classifiers to model the behavior of constituent agents. According to the nature of the constituent dynamics, weights are learned by the model from the data using an evolution strategy to obtain a good classification performance. For our analysis, we used the constituent agents’ communications on Twitter during the installation period of the Constitutional Convention (July–October 2021). In order to differentiate political positions (left, center, right), we applied the developed algorithm to obtain the scores of 882 ballots cast in the first stage of the convention (4 July to 29 September 2021). Then, we used k-means to identify three clusters containing right-wing, center, and left-wing positions. Experimental results obtained using the three constructed datasets showed that using alternative weight values in the TAN construction procedure, inferred by an evolution strategy, yielded improvements in the classification accuracy measured in the test sets compared to the results of the TAN constructed with conditional mutual information, as well as other Bayesian network classifier construction approaches. Additionally, our results may help us to better understand political behavior in constitutional processes and to improve the accuracy of TAN classifiers applied to social, real-world data.
KW - Bayesian networks
KW - Constitution making
KW - Evolution strategy
KW - TAN classifiers
KW - Twitter data
UR - http://www.scopus.com/inward/record.url?scp=85122238552&partnerID=8YFLogxK
U2 - 10.3390/math10020166
DO - 10.3390/math10020166
M3 - Article
AN - SCOPUS:85122238552
SN - 2227-7390
VL - 10
JO - Mathematics
JF - Mathematics
IS - 2
M1 - 166
ER -