TY - JOUR
T1 - Automated Multiple View Inspection based on uncalibrated image sequences
AU - Mery, Domingo
AU - Carrasco, Miguel
PY - 2005
Y1 - 2005
N2 - The Automated Multiple View Inspection (AMVI) has been recently developed for automated defect detection of manufactured objects. The approach detects defects by analysing image sequences in two steps. In the first step, potential defects are automatically identified in each image of the sequence. In the second step, the potential defects are tracked in the sequence. The key idea of this strategy is that only the existing defects (and not the false detections) can be successfully tracked in the image sequence because they are located in positions dictated by the motion of the test object. The AMVI strategy was successfully implemented for calibrated image sequences. However, it is not simple to implement it in industrial environments because the calibration process is a difficult task and unstable. In order to avoid the mentioned disadvantages, in this paper we propose a new AMVI strategy based on the tracking of potential detects in uncalibrated image sequences. Our approach tracks the potential defects based on a motion model estimated from the image sequence self. Thus, we obtain a motion model by matching structure points of the images. We show in our experimental results on aluminium die castings that the detection is promising in uncalibrated images by detecting 92.3% of all existing defects with only 0.33 false alarms per image.
AB - The Automated Multiple View Inspection (AMVI) has been recently developed for automated defect detection of manufactured objects. The approach detects defects by analysing image sequences in two steps. In the first step, potential defects are automatically identified in each image of the sequence. In the second step, the potential defects are tracked in the sequence. The key idea of this strategy is that only the existing defects (and not the false detections) can be successfully tracked in the image sequence because they are located in positions dictated by the motion of the test object. The AMVI strategy was successfully implemented for calibrated image sequences. However, it is not simple to implement it in industrial environments because the calibration process is a difficult task and unstable. In order to avoid the mentioned disadvantages, in this paper we propose a new AMVI strategy based on the tracking of potential detects in uncalibrated image sequences. Our approach tracks the potential defects based on a motion model estimated from the image sequence self. Thus, we obtain a motion model by matching structure points of the images. We show in our experimental results on aluminium die castings that the detection is promising in uncalibrated images by detecting 92.3% of all existing defects with only 0.33 false alarms per image.
KW - Automated visual inspection
KW - Defect detection
KW - Multiple view geometry
UR - http://www.scopus.com/inward/record.url?scp=26444538914&partnerID=8YFLogxK
U2 - 10.1007/11499145_125
DO - 10.1007/11499145_125
M3 - Conference article
AN - SCOPUS:26444538914
SN - 0302-9743
VL - 3540
SP - 1238
EP - 1247
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
T2 - 14th Scandinavian Conference on Image Analysis, SCIA 2005
Y2 - 19 June 2005 through 22 June 2005
ER -