Automated lesion detection by regressing intensity-based distance with a neural network

Kimberlin M.H. van Wijnen, Florian Dubost, Pinar Yilmaz, M. Arfan Ikram, Wiro J. Niessen, Hieab Adams, Meike W. Vernooij, Marleen de Bruijne

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

Localization of focal vascular lesions on brain MRI is an important component of research on the etiology of neurological disorders. However, manual annotation of lesions can be challenging, time-consuming and subject to observer bias. Automated detection methods often need voxel-wise annotations for training. We propose a novel approach for automated lesion detection that can be trained on scans only annotated with a dot per lesion instead of a full segmentation. From the dot annotations and their corresponding intensity images we compute various distance maps (DMs), indicating the distance to a lesion based on spatial distance, intensity distance, or both. We train a fully convolutional neural network (FCN) to predict these DMs for unseen intensity images. The local optima in the predicted DMs are expected to correspond to lesion locations. We show the potential of this approach to detect enlarged perivascular spaces in white matter on a large brain MRI dataset with an independent test set of 1000 scans. Our method matches the intra-rater performance of the expert rater that was computed on an independent set. We compare the different types of distance maps, showing that incorporating intensity information in the distance maps used to train an FCN greatly improves performance.

Idioma originalInglés
Título de la publicación alojadaMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditoresDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas234-242
Número de páginas9
ISBN (versión impresa)9783030322502
DOI
EstadoPublicada - 2019
Publicado de forma externa
Evento22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duración: 13 oct. 201917 oct. 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11767 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
País/TerritorioChina
CiudadShenzhen
Período13/10/1917/10/19

Huella

Profundice en los temas de investigación de 'Automated lesion detection by regressing intensity-based distance with a neural network'. En conjunto forman una huella única.

Citar esto