Asymptotic expansion for the quadratic variations of the solution to the heat equation with additive white noise

Héctor Araya, Ciprian A. Tudor

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

We consider the sequence of spatial quadratic variations of the solution to the stochastic heat equation with space-time white noise. This sequence satisfies a Central Limit Theorem. By using Malliavin calculus, we refine this result by proving the convergence of the sequence of densities and by finding the second-order term in the asymptotic expansion of the densities. In particular, our proofs are based on sharp estimates of the correlation structure of the solution, which may have their own interest.

Idioma originalInglés
Número de artículo2150009
PublicaciónStochastics and Dynamics
Volumen21
N.º2
DOI
EstadoPublicada - mar. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Asymptotic expansion for the quadratic variations of the solution to the heat equation with additive white noise'. En conjunto forman una huella única.

Citar esto