Approximating the Lévy-Frailty Marshall-Olkin Model for Failure Times

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper we approximate the last, close-to-first, and what we call quantile failure times of a system, when the system-components' failure times are modeled according to a Levy-frailty Marshall-Olkin (LFMO) distribution. The LFMO distribution is a fairly recent model that can be used to model components failing simultaneously in groups. One of its prominent features is that the failure times of the components are conditionally iid; indeed, the failure times are iid exponential when conditioned on the path of a given Lévy subordinator process. We are motivated by further studying the order statistics of the LFMO distribution, as recently Barrera and Lagos (2020) showed an atypical behavior for the upper-order statistics. We are also motivated by approximating the system when it has an astronomically large number of components. We perform computational experiments that show significative variations in the convergence speeds of our approximations.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2020 Winter Simulation Conference, WSC 2020
EditoresK.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, R. Thiesing
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas2389-2399
Número de páginas11
ISBN (versión digital)9781728194998
DOI
EstadoPublicada - 14 dic. 2020
Evento2020 Winter Simulation Conference, WSC 2020 - Orlando, Estados Unidos
Duración: 14 dic. 202018 dic. 2020

Serie de la publicación

NombreProceedings - Winter Simulation Conference
Volumen2020-December
ISSN (versión impresa)0891-7736

Conferencia

Conferencia2020 Winter Simulation Conference, WSC 2020
País/TerritorioEstados Unidos
CiudadOrlando
Período14/12/2018/12/20

Huella

Profundice en los temas de investigación de 'Approximating the Lévy-Frailty Marshall-Olkin Model for Failure Times'. En conjunto forman una huella única.

Citar esto