Ant colonies for the RCPS problem

Joaquín Bautista, Jordi Pereira

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

Several approaches based on Ant Colony Optimization (ACO) are developed to solve the Resource Constrained Project Scheduling Problem (RCPSP). Starting from two different proposals of the metaheuristic, four different algorithms adapted to the problem characteristics are designed and implemented. Finally the effectiveness of the algorithms are tested comparing its results with those previously found in the literature for a data set used as a the benchmark instance set for the problem.

Idioma originalInglés
Título de la publicación alojadaTopics in Artificial Intelligence - 5th Catalonian Conference on AI, CCIA 2002, Proceedings
EditoresM. Teresa Escrig, Francisco Toledo, Elisabet Golobardes
EditorialSpringer Verlag
Páginas257-268
Número de páginas12
ISBN (versión digital)3540000119, 9783540000112
DOI
EstadoPublicada - 2002
Publicado de forma externa
Evento5th Catalonian Conference on Artificial Intelligence, CCIA 2002 - Castellon, Espana
Duración: 24 oct. 200225 oct. 2002

Serie de la publicación

NombreLecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
Volumen2504
ISSN (versión impresa)0302-9743

Conferencia

Conferencia5th Catalonian Conference on Artificial Intelligence, CCIA 2002
País/TerritorioEspana
CiudadCastellon
Período24/10/0225/10/02

Huella

Profundice en los temas de investigación de 'Ant colonies for the RCPS problem'. En conjunto forman una huella única.

Citar esto