Analyzing Stock Brokers' Trading Patterns: A Network Decomposition and Spatial Econometrics Approach

Juan Eberhard, Jaime F. Lavín, Alejandro Montecinos-Pearce, José Arenas, Ahmet Sensoy

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Using a unique data set with all the daily transactions from the Santiago Stock Exchange, we develop a novel methodology that combines a network decomposition with a spatial econometrics technique to study how brokers' characteristics and trading decisions may affect the stock market return. We present suggestive evidence of a mechanism by which structural changes of the transaction network between brokers affect the aggregate returns of the stock market. We find that brokers tend to trade with counterparties with dissimilar intraday selling volume when market return significantly increases. Moreover, brokers with a research department tend to sell to brokers without a research department when the market experiences a considerable increase of its return. From the financial perspective, these results highlight new ways in which intermediaries may affect market equilibrium and the efficiency of the market.

Idioma originalInglés
Número de artículo7490640
PublicaciónComplexity
Volumen2019
DOI
EstadoPublicada - 2019

Huella

Profundice en los temas de investigación de 'Analyzing Stock Brokers' Trading Patterns: A Network Decomposition and Spatial Econometrics Approach'. En conjunto forman una huella única.

Citar esto