An efficient dense network for semantic segmentation of eyes images captured with virtual reality lens

Andres Valenzuela, Claudia Arellano, Juan Tapia

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Eye-tracking and Gaze estimation are difficult tasks that may be used for several applications including human-computer interfaces, salience detection and Virtual reality amongst others. This paper presents a segmentation algorithm based on deep learning that efficiently discriminates pupils, iris, and sclera from the background in images captured using a Virtual Reality lens. A light network called DensetNet10 trained from scratch is proposed. It contains fewer parameters than traditional architectures based on DenseNet which allows it to be used in mobile device applications. Experiments show that this network achieved higher IOU rates when comparing with DensetNet56-67-103 and DeeplabV3+ models in the Facebook database. Furthermore, this method reached 8th place in The Facebook semantic segmentation challenge with 0.94293 mean IOU and 202.084 parameters with a final score of 0.97147.

Idioma originalInglés
Título de la publicación alojadaProceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019
EditoresKokou Yetongnon, Albert Dipanda, Gabriella Sanniti di Baja, Luigi Gallo, Richard Chbeir
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas28-34
Número de páginas7
ISBN (versión digital)9781728156866
DOI
EstadoPublicada - nov. 2019
Evento15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019 - Sorrento, Italia
Duración: 26 nov. 201929 nov. 2019

Serie de la publicación

NombreProceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019

Conferencia

Conferencia15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019
País/TerritorioItalia
CiudadSorrento
Período26/11/1929/11/19

Huella

Profundice en los temas de investigación de 'An efficient dense network for semantic segmentation of eyes images captured with virtual reality lens'. En conjunto forman una huella única.

Citar esto