Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques

Fedor V. Fomin, Mathieu Liedloff, Pedro Montealegre, Ioan Todinca

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

In this paper we give upper bounds on the number of minimal separators and potential maximal cliques of graphs w.r.t. two graph parameters, namely vertex cover (vc) and modular width (mw). We prove that for any graph, the number of its minimal separators is O(3 vc) and O(1. 6181 mw) , and the number of potential maximal cliques is O(4 vc) and O(1. 7347 mw) , and these objects can be listed within the same running times (The O notation suppresses polynomial factors in the size of the input). Combined with known applications of potential maximal cliques, we deduce that a large family of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced Path, Feedback vertex set and many others, can be solved in time O(4 vc) or O(1. 7347 mw). With slightly different techniques, we prove that the Treedepth problem can be also solved in single-exponential time, for both parameters.

Idioma originalInglés
Páginas (desde-hasta)1146-1169
Número de páginas24
PublicaciónAlgorithmica
Volumen80
N.º4
DOI
EstadoPublicada - 1 abr. 2018

Huella

Profundice en los temas de investigación de 'Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques'. En conjunto forman una huella única.

Citar esto