Advanced structural design for precision radial velocity instruments

Dan Baldwin, Andrew Szentgyorgyi, Stuart Barnes, Jacob Bean, Sagi Ben-Ami, Patricia Brennan, Jamie Budynkiewicz, Moo Young Chun, Charlie Conroy, Jeffrey D. Crane, Harland Epps, Ian Evans, Janet Evans, Jeff Foster, Anna Frebel, Thomas Gauron, Dani Guzman, Tyson Hare, Bi Ho Jang, Jeong Gyun JangAndres Jordan, Jihun Kim, Kang Min Kim, Claudia Mendes De Oliveira, Mercedes Lopez-Morales, Kenneth McCracken, Stuart McMuldroch, Joseph Miller, Mark Mueller, Jae Sok Oh, Mark Ordway, Byeong Gon Park, Chan Park, Sung Joon Park, Charles Paxson, David Phillips, David Plummer, William Podgorski, Andreas Seifahrt, Daniel Stark, Joao Steiner, Alan Uomoto, Ronald Walsworth, Young Sam Yu

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

Idioma originalInglés
Título de la publicación alojadaAdvances in Optical and Mechanical Technologies for Telescopes and Instrumentation II
EditoresRamon Navarro, James H. Burge
EditorialSPIE
ISBN (versión digital)9781510602038
DOI
EstadoPublicada - 2016
Publicado de forma externa
EventoAdvances in Optical and Mechanical Technologies for Telescopes and Instrumentation II - Edinburgh, Reino Unido
Duración: 26 jun. 20161 jul. 2016

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen9912
ISSN (versión impresa)0277-786X
ISSN (versión digital)1996-756X

Conferencia

ConferenciaAdvances in Optical and Mechanical Technologies for Telescopes and Instrumentation II
País/TerritorioReino Unido
CiudadEdinburgh
Período26/06/161/07/16

Huella

Profundice en los temas de investigación de 'Advanced structural design for precision radial velocity instruments'. En conjunto forman una huella única.

Citar esto