A Stacked Generalization Ensemble Model for Help Desk Ticket Assignment

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The assignment of Help Desk Support tickets (HDTAP) to programmers or developers is an important problem for Information Technology and software development companies. When the number of tickets and programmers are significant, the assignment becomes a time-consuming task. To handle this issue, companies develop software to manage the generation, the tracking, and the assignment of tickets to employees. Current advances in machine learning can automate the HDTAP, and make it more efficient. In this paper, we propose the use of an ensemble model based on Stacked Generalization that replicates the expert behavior by reducing the classification errors. The model is tested using data of a Chilean company that develops management software for hospitals. The results show that our proposal obtains the best accuracy and F1 score outperforming, consistently, most state-of-the-art models.

Idioma originalInglés
Título de la publicación alojada2022 41st International Conference of the Chilean Computer Science Society, SCCC 2022
EditorialIEEE Computer Society
ISBN (versión digital)9781665456746
DOI
EstadoPublicada - 2022
Publicado de forma externa
Evento41st International Conference of the Chilean Computer Science Society, SCCC 2022 - Santiago, Chile
Duración: 21 nov. 202225 nov. 2022

Serie de la publicación

NombreProceedings - International Conference of the Chilean Computer Science Society, SCCC
Volumen2022-November
ISSN (versión impresa)1522-4902

Conferencia

Conferencia41st International Conference of the Chilean Computer Science Society, SCCC 2022
País/TerritorioChile
CiudadSantiago
Período21/11/2225/11/22

Huella

Profundice en los temas de investigación de 'A Stacked Generalization Ensemble Model for Help Desk Ticket Assignment'. En conjunto forman una huella única.

Citar esto