A sharp uniform bound for the distribution of sums of Bernoulli trials

Jean Bernard Baillon, Roberto Cominetti, José Vaisman

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

10 Citas (Scopus)

Resumen

In this note we establish a uniform bound for the distribution of a sum S n=X 1+···+X n of independent non-homogeneous Bernoulli trials. Specifically, we prove that σ n (S n = j) ≤ η, where σ n denotes the standard deviation of S n, and η is a universal constant. We compute the best possible constant η ~ 0.4688 and we show that the bound also holds for limits of sums and differences of Bernoullis, including the Poisson laws which constitute the worst case and attain the bound. We also investigate the optimal bounds for n and j fixed. An application to estimate the rate of convergence of Mann's fixed-point iterations is presented.

Idioma originalInglés
Páginas (desde-hasta)352-361
Número de páginas10
PublicaciónCombinatorics Probability and Computing
Volumen25
N.º3
DOI
EstadoPublicada - 1 may. 2016

Huella

Profundice en los temas de investigación de 'A sharp uniform bound for the distribution of sums of Bernoulli trials'. En conjunto forman una huella única.

Citar esto