A RUL Estimation System from Clustered Run-to-Failure Degradation Signals

Anthony D. Cho, Rodrigo A. Carrasco, Gonzalo A. Ruz

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The prognostics and health management disciplines provide an efficient solution to improve a system’s durability, taking advantage of its lifespan in functionality before a failure appears. Prognostics are performed to estimate the system or subsystem’s remaining useful life (RUL). This estimation can be used as a supply in decision-making within maintenance plans and procedures. This work focuses on prognostics by developing a recurrent neural network and a forecasting method called Prophet to measure the performance quality in RUL estimation. We apply this approach to degradation signals, which do not need to be monotonical. Finally, we test our system using data from new generation telescopes in real-world applications.

Idioma originalInglés
Número de artículo5323
PublicaciónSensors
Volumen22
N.º14
DOI
EstadoPublicada - jul. 2022
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A RUL Estimation System from Clustered Run-to-Failure Degradation Signals'. En conjunto forman una huella única.

Citar esto