A Primal-Dual Partial Inverse Algorithm for Constrained Monotone Inclusions: Applications to Stochastic Programming and Mean Field Games

Luis Briceño-Arias, Julio Deride, Sergio López-Rivera, Francisco J. Silva

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

In this work, we study a constrained monotone inclusion involving the normal cone to a closed vector subspace and a priori information on primal solutions. We model this information by imposing that solutions belong to the fixed point set of an averaged nonexpansive mapping. We characterize the solutions using an auxiliary inclusion that involves the partial inverse operator. Then, we propose the primal-dual partial inverse splitting and we prove its weak convergence to a solution of the inclusion, generalizing several methods in the literature. The efficiency of the proposed method is illustrated in multiple applications including constrained LASSO, stochastic arc capacity expansion problems in transport networks, and variational mean field games with non-local couplings.

Idioma originalInglés
Número de artículo21
PublicaciónApplied Mathematics and Optimization
Volumen87
N.º2
DOI
EstadoPublicada - abr. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A Primal-Dual Partial Inverse Algorithm for Constrained Monotone Inclusions: Applications to Stochastic Programming and Mean Field Games'. En conjunto forman una huella única.

Citar esto