A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs

Daniel Espinoza, Eduardo Moreno

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

20 Citas (Scopus)


Recent years have seen growing interest in coherent risk measures, especially in Conditional Value-at-Risk ($$\mathrm {CVaR}$$CVaR). Since $$\mathrm {CVaR}$$CVaR is a convex function, it is suitable as an objective for optimization problems when we desire to minimize risk. In the case that the underlying distribution has discrete support, this problem can be formulated as a linear programming (LP) problem. Over more general distributions, recent techniques, such as the sample average approximation method, allow to approximate the solution by solving a series of sampled problems, although the latter approach may require a large number of samples when the risk measures concentrate on the tail of the underlying distributions. In this paper we propose an automatic primal-dual aggregation scheme to exactly solve these special structured LPs with a very large number of scenarios. The algorithm aggregates scenarios and constraints in order to solve a smaller problem, which is automatically disaggregated using the information of its dual variables. We compare this algorithm with other common approaches found in related literature, such as an improved formulation of the full problem, cut-generation schemes and other problem-specific approaches available in commercial software. Extensive computational experiments are performed on portfolio and general LP instances.

Idioma originalInglés
Páginas (desde-hasta)617-638
Número de páginas22
PublicaciónComputational Optimization and Applications
EstadoPublicada - 1 dic. 2014


Profundice en los temas de investigación de 'A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs'. En conjunto forman una huella única.

Citar esto