A multi-strategy approach to biological named entity recognition

John Atkinson, Veronica Bull

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

32 Citas (Scopus)

Resumen

Recognizing and disambiguating bio-entities (genes, proteins, cells, etc.) names are very challenging tasks as some biologica databases can be outdated, names may not be normalized, abbreviations are used, syntactic and word order is modified, etc. Thus, the same bio-entity might be written into different ways making searching tasks a key obstacle as many candidate relevant literature containing those entities might not be found. As consequence, the same protein mention but using different names should be looked for or the same discovered protein name is being used to name a new protein using completely different features hence named-entity recognition methods are required. In this paper, we developed a bio-entity recognition model which combines different classification methods and incorporates simple pre-processing tasks for bio-entities (genes and proteins) recognition is presented. Linguistic pre-processing and feature representation for training and testing is observed to positively affect the overall performance of the method, showing promising results. Unlike some state-of-the-art methods, the approach does not require additional knowledge bases or specific-purpose tasks for post processing which make it more appealing. Experiments showing the promise of the model compared to other state-of-the-art methods are discussed.

Idioma originalInglés
Páginas (desde-hasta)12968-12974
Número de páginas7
PublicaciónExpert Systems with Applications
Volumen39
N.º17
DOI
EstadoPublicada - 1 dic. 2012
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'A multi-strategy approach to biological named entity recognition'. En conjunto forman una huella única.

Citar esto