A model-based approach to Bayesian classification with applications to predicting pregnancy outcomes from longitudinal β-hCG profiles

Rolando De La Cruz-Mesía, Fernando A. Quintana

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

17 Citas (Scopus)

Resumen

This paper discusses Bayesian statistical methods for the classification of observations into two or more groups based on hierarchical models for nonlinear longitudinal profiles. Parameter estimation for a discriminant model that classifies individuals into distinct predefined groups or populations uses appropriate posterior simulation schemes. The methods are illustrated with data from a study involving 173 pregnant women. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from beta human chorionic gonadotropin data available at early stages of pregnancy.

Idioma originalInglés
Páginas (desde-hasta)228-238
Número de páginas11
PublicaciónBiostatistics
Volumen8
N.º2
DOI
EstadoPublicada - abr. 2007

Huella

Profundice en los temas de investigación de 'A model-based approach to Bayesian classification with applications to predicting pregnancy outcomes from longitudinal β-hCG profiles'. En conjunto forman una huella única.

Citar esto