A Kernel Log-Rank Test of Independence for Right-Censored Data

Tamara Fernández, Arthur Gretton, David Rindt, Dino Sejdinovic

Producción científica: Contribución a una revistaArtículorevisión exhaustiva


We introduce a general nonparametric independence test between right-censored survival times and covariates, which may be multivariate. Our test statistic has a dual interpretation, first in terms of the supremum of a potentially infinite collection of weight-indexed log-rank tests, with weight functions belonging to a reproducing kernel Hilbert space (RKHS) of functions; and second, as the norm of the difference of embeddings of certain finite measures into the RKHS, similar to the Hilbert–Schmidt Independence Criterion (HSIC) test-statistic. We study the asymptotic properties of the test, finding sufficient conditions to ensure our test correctly rejects the null hypothesis under any alternative. The test statistic can be computed straightforwardly, and the rejection threshold is obtained via an asymptotically consistent Wild Bootstrap procedure. Extensive investigations on both simulated and real data suggest that our testing procedure generally performs better than competing approaches in detecting complex nonlinear dependence.

Idioma originalInglés
Páginas (desde-hasta)925-936
Número de páginas12
PublicaciónJournal of the American Statistical Association
EstadoPublicada - 2023
Publicado de forma externa


Profundice en los temas de investigación de 'A Kernel Log-Rank Test of Independence for Right-Censored Data'. En conjunto forman una huella única.

Citar esto